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Abstract

The physical principles that have been used to develop mixed-layer -

‘ ‘models for a surface layer of variable depth "h", are applied instead

dlrectly to the bottom layers of:the Nested Grld,Model’(NGM). This ‘elim-
inates the need to predict 'h explicitly and greatly simplifies the
application of these ideas. The pr1nc1ples are reviewed in. section 2.
Generation of turbulence by, shear at the top of the mixed reglon 1s
ignored in this first formulation. In- section 3 the principles: are
expressed as integrals with respect to the sigma coordinate of the"

NGM, and the NGM history variables of potential temperature and specific
humldlty are related to the buoyancy « Section 4 ‘'spells out the details
of the numerical method as applied to the discrete sigma layers of the
model. The numerical method determines how many layers (K) participate
in the mixing for each column. It then produces a uniform (larger)

value of buoyancy in layers 1 through (R-1), and determines the appropriate
decrease in the buoyancy of the capplng 1ayer K.

Section 5 .shows how the changes in buoyancy derived in-section 4
can be re-converted to changes in the NGM variables of potential temperature
and specific humidity. - An entrainment factor =xm that describes the
mixing between layers K-1 and K is used to effect this conversion.
Section 6 describes how the m1x1ng between layers K and K—l could be
modlfled when saturation occurs in layer K-1l.

Tests with the Nested Grid‘Model in winter of 1985-6 were made in
which only mechanical stirring was effective over land, because the.
model did not contain sensible heat flux over land, nor radiation. The
stirring increased the horizontal averaged temperature in the bottom
layer of the model over land by about 1 deg/day. Changes as large as

10 deg/day were observed in regions of strong wind and stable air.

The Appendix contains test results from computations with a single
column using fixed values of surface heat flux and mechanical .stirring.
The functional dependence of the mixed layer depth with time agrees with
well-known results from models that are formulated W1th an explicit

‘mixed layer depth "h".



kTurbulent mixing near the ground for the

Nested Grid Model

1. Introduction.

Turbulence near the ground is affected by wind shear, surface roughness,

: and convection from the ground or ocean surface. ( Turbulerce generated by
"_shear at the .top of the mixed region will not be considered in the present
-paper. ) The representation of these processes in redistributing heat

and moisture in the Nested Grid Model (NGM) will follow the -physical

ideas of F. K. Ball (1960), J. Deardorff and G. Willis (1985), D. Lilly (1968),
D. Randall ( 1984) -and others, but with an important practical difference. :
These authors apply the physical ideas (first formulated in meteorology

by Ball) to a model in which the bottom part of the atmosphere is occupied

by a mixed 1ayer of ‘depth "h". Similar procedures have been used in-
oceanography to model the upper mixed layer, e. g by Krause and Turner (1967)
This depth must be forecast explicitly, together with the velocity; temp-

- erature, and moisture in the mixed layer. 1In the NGM, the physical

ideas will be applied dlrectly to the existing layer structure of the .
nodel; the exp11c1t depth h Wlll not be necessary. '

2. .The phy81cal statements.

To express the physical ideas it is convenieént to use the "anelastic"
representation of the atmospheric equations (Ogura and Phillips, 1962).
These are suitable for motions that are :«(a) slow enough that compressibility
is important only for- vertical displacements, but,~(§) the motions can
extend over a deep enough layer (several kilometers) that the upward
decrease of density as a measure of inertia cannot be ignored. In this

',representatlon the motion is described as a deviation from a resting

atmosphere of uniform potential temperature, 6 . A.subscrlpt a" will
designate the varlable in this reference atmosphere.

6a = © (= constant) , - (2.1)
W, = (o, /100 c)R/cp = oo [1 - (gle,@) 2], (2.2)
,'Fa‘= Foo [1_(g/c@ ) z] /R, (2.3)
Ta = Too - (glep)z = Ty &, (2.4)
fPoo = b0/ RTgo | (2.5)
Too .'=‘ T 0. . | f (2.6)
Poos  Poos and Tyg are the values at the ground, and “z" measures the

helght above the ground.



* The anelastic system is as follows.

The ‘equation of motion:

dv/dt = - V3P + bk + F . o (2.7)

At

: (_We,can;ignore the Coriolis force in deriving the turbulent effects.)

iThe equatlon of contlnulty

9)oaw/az + v2 fa —’V3° .lboalm‘.’.‘}= U o (2.8)
Fi'The first law of thermodynamlcs : ' ‘
d b/dt = (= ) g . (2.9)
cp’Tra.ﬁﬁ
“b*\is.the‘fbuoyaﬁcy": _ -‘_ ‘
b = g(6 -@)/@ | (2.10)

F is the molecular viscous force while q is the heating rate ( e.g.

?ﬁlogoules per ton per sec) due to molecular conduction, radiation, and

release of latent heat. "P" is a pressure-like variable, of dimensions

~length2 / timeZ . Y. is the horizontal. part of the three dimensiomnal

velocity vector, v . The explicit use of potential temperature in (2.10)
will be convenient for the NGM, where potential temperature (as opposed
to temperature) is the forecast varlable.

- The equation for the klnet1C'energy ,» with XK = (1/2) Pal 2,
. is derived from (2.7) and (2 8) C ‘
DK V o |
= - K+ P + b W + o F . 2.11
. 3 fa v ( ) /oa /oa o b ( )

ot

The equation for the potential energy is'derived,ermA(Z.S) and (2.9):

9('— bz) ‘ Tt (g z.pa) :
fe = V3~.~favbz —/Dabw = —-———ﬁ— qa . (2.12)
2t L e ' TI‘@

The term: /oa bw represents the transformatlon from_potentlal to kinetic
energy.

We now manlpulate the equatlons in the usual way by using the Reynolds'

averaging convention for turbulence together with the usual boundary layer

assumption that horizontal derlvatlves of turbulent fluxes can be ignored.



' The first relevant equation is one for the change of the mean buoyancy:

2 ( b)Yy N , R v(‘,, 1) _ , ‘
—-—'-lf—a—-—'—- = L8y - ,3 f’a ’ - et (2.13)

- The term ’iSb_ includes all non-turbulent terms, such as advection of the .
mean buoyancy by the mean wind, and the mean heating rate q . A second
“equation is obtained from.(2.12) for the mean potential energy:

: ’a ( _ka T)_ z ) ’a ( /a 7z w'h! ) - = ( ) 4) .
: - = . LS + - b'w' ., 2.1
§ 1? t R P - 9. ‘ f’a e '

i Where LSp 1nc1udes all nonrturbulent terms.

It will: also be necessary to con31der the equation for the turbulent
, klnetlc energy X i

‘K= | (1/2) )oa E"Z . o (2.15)
Lt is 1' , G | | |
DK Y(paw "<'P""+'K ) ) e
= + /7a v'. F!
’9 £ v 92 P ) .
, 7 (2.16)
V. ,
v o —_— 4 /pa w'b' s
~in which | | | | |
= ~fa W'V‘.".' . o | (2.17)

is the turbulent stress exerted by the air above level z on the alr
below level Z.

We now integrate each of the three equations from z = & to z =
L , where & is a very small distance close to the "ground”, and L
is a fixed height above the turbulence, such that all turbulent fluxes
can (.or willl') be ignored at L. .( We can also ignore from now on the two
large-scale terms since they Wlll be forecast by the non—turbulent part
of the model.) :

— | : o

. (2.18)
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In (2.18) the rhs cannot be set equal to zero because while w' will
tend to zero at the (level?) ground, b' will tend to increase because of the
local hot spots associated with convection. The limit as S goes to
zero is that w'b' is the upward turbulent flux of buoyancy from the
surface, denoted by B :

fg w'b' (at z =& )‘ = B . : ‘ (2.21)

( B will be proportional to a linear combination of the heat flux H-.and
the evaporation E; as discussed later in section 3.)

Our first physical statement about the effect of turbulence is the
following integral:

(2.22)

S
=

( The integral extends from the ground to above the mixed region; )

To arrive at the second physical statement it is necessary to con51der

both (2.19) and (2.20):
In (2.20) we assume that

»(a)kthe.left side is close to zero——i.e. that there is an appr0¥’(2.23)
- ximate balance between the terms on the right side, and

(b) the term w'(P'+K') is negligible at the ground. (2.24)
In (2.19) we assume that
(¢) the appearance of S as a factor multiplying w'b' at (2.25)

z = § allows us to set that term equal to zero. :
(Compare with (2.18), which had no <S‘multiplying it. )



At this point we are left with a simple equatlon for the rate of
change of the mean potential energy,

B bz dz f’a b'w' dz , (2.26)
ot fa . \jﬁ o |

and a-balance between three turbulent energy processes

Paad 'a.z ]
am - (I11)

| i _ » ~fa“v o i , _
= Ve F o ' ) —_— S To! .
0 Vﬁéa vy F' dz + &= rdz | pa b'w' dz . (2.27)

The three integrals have the following meaning..
(I)’Viscous dissipation. ‘This term is always.negative.

(II) A change due to the turbulent Reynolds stress. This is normally
positive in the boundary layer.

(III) A change due to upward flux of buoyaney. Its sign requires
'some discussion. :

‘Consider first the "convective" case where heatingv( i.e. B) dominates

~‘and there is little mean wind. (TII) must be positive since (I) is negative.

Measurements by Deardorff and Willis (1985; see their figure 2 ) in labora-
tory convectigg experiments show considerable regularity in that the vertical
integral of b'w' is proportional to B. In our notation: the proportionality
measured by them may be expressed as '

,Jp LW dz ) = 0.4hB, | (2.28)
CONY . |

 where h is the depth of the mixed layer.

We now consider the shear term, (II). Ball (1960) postulated that under
conditions of strong wind ( .ignoring B ) , it was not likely that (I) could
balance all of (II) by itself. This would require that part of (II) be bal-
anced by a negative value of (III): ’ '

¢ | b'w' dz ) - - constant x | ¥ — 4z . (2.29)
a . an
: SHEAR oz

where the constant is p031t1Ve and less than one. Kato and Phillips (1969)

- performed 1aboratory experiments in which stably stratified water was agltated

mechanlcally at the top. They concluded ( in our notation ) that



( BWT dz ) = - 1.25 wd o, (2.30)
e SHEAR fo |

where. " ux is the "friction velocity”

Po w?2 = ¥ . i (2.31)
: -z =0 : .

Denman and Miyake (1973) found that (2.30) gave reasonably accurate results

. when applied to the changes in the upper mixed layer of the ocean at ship
PAPA, as induced by wind stirring. In terms of (2.26), this mixing leads

' to an increase in the potential energy—— a lifting of the center of mass—-—

by the mechanical stirring. Dreidonks (1981) performed calculatlons with

a mixing model based on the above physical principles ( but using an exp11c1t

mixed depth "h") to interpret turbulent field observations in Holland.

He quotes the larger value of 2.5 derived by Kantha et al. (1977) as giving

satisfactory results in his calculations. ‘The latter value will be used

therefore in the NGM instead of the Kato-Phillips value of 1.25 .

v Our second equation is obtained by using both (2.28) and (2.30) to
express the term on the right side of (2.26):

—?—.'f -~"\fa bzdz = -0.4h3B + 2.5~F0 u*3 (2.32)
ot J T

.. ~One ‘remark can already‘be made about the relative importance of
the buoyancy flux B and.the mechanical stirring. The depth over which
b will be ‘changing is ."h"*. The stress term in (2.32), however, is
not proportional to h, whereas the other two terms in that equation are.
~We therefore can:expect that the mechanical stirring will be most
important only for small depths of the mixed layer, and to lose its
importance ‘as' h 1ncreases. ( Ball, in fact, considered the 3-km deep
mixed layer. occurrlng over the interior of Australia in the daytime.
This value of h was large. enough ‘to lead him to ignore mechanical mixing
in favor of that from convection. Wind stirring can however be expected
to be more important in winter when 'B will be small over land and strong
winds can produce a large.ux. )

.. The factor 0. 4 in the results of Deardorff and Willis is less than 0.5.
This is because there are negative values of b'w' around the top of the
mixed region. This represents the entrainment of lighter fluid from
the .quiescent region above the mixed layer into the turbulent mlxed
layer.,




3. Relatlon between fluxes of buoyancy, heat, and m01sture, and the NGM
"history variables”. . : . .

Before specifying- hoW (2.22) and (2.32) will be used in the NGM, it is
necessary to correct the buoyancy formula for the effect of virtual temperature.
The normal definition of virtual potentlal temperature is to multiply ®©
with the factor (1 + 0.609 q ), where q is the spec1f1c humidity. This
is a non-linear relation. The mixing process w1ll determlne changes in
buoyancy, not € or q . The former changes must, at the end, be con=
verted into changes of & and q « A linear relatlon for virtual potent-—.
ial temperature will simplify thlS conversion. - To obtain this, we first
note that in the mixed region for any one- column, ‘the variations of © and
q w1ll be small. We therefore write -

ev = «(‘ 1 +'0‘.609 a1 ) e . + (o 609 87 )q S (3.1)
Where 91 “and q] - are the values in the bottom.layer of the model at each
column. We consider this as in effect redefining the reference atmosphere
on ‘a local basis, so that 01 and qp in (3.1) can be con51dered as con—
: stants within each column. c

The buoyancy'flux B is then giVen by

B h_¥ | ?;W'bT ‘ % f (g /@) Wﬁev;‘

-

(2 /@) [(1+ 609q1) fw W+ (0,609 6 7 ——W-,q'] (3.2)

Il

(g /@) [( (1+.609q1)/ Wgep ) HF  + (0.609 @) Ev]

where
HF = heat flux from the. surface ¢ kllOJoules per square meter
- - per second ) S
“and L ' (3.3)
EV = evaporation rate from the surface ( tons of water per square

meter per second )

‘The NGM has a sigma. coordlnate system in whlch 51gma increases from
zero at the earth's surface to one at zero pressure:

J = : (Ps— P) / Ps" ) (3‘4)

where pg is the surface pressure. ( The turbulence will not change pg. )
The "history" variables for temperature and specific humidity in the NGM
are the products pg © and Ps 4 » ( In the NGM code, Pg is stored in
units of 100 cbs. The final statement in section 4 will descrlbe how
this convention for pg can be ea511y accomodated . )

=7-



We now introduce several minor approx1matlons 1nto the 1ntegrals
appearing in (2.22). and (2.32). These approximations will simplify
- greatly. the arithmetic in CYBER vector operatlons, with little effect on
the end result. Firstly we set : : ,

ID’a'dz =‘f>dz = ~dp/ g 7=‘+ps de~ /'g . (3.5)

-Secondly, we first replace .z in (2.32) by z 'in,the reference atmo-—
sphere, : ' :

2 = (e ®/g) (1 =Ma/ Teo)» ' (3.6)
and then replace TJJ, ~by' ﬂ_‘from the - NGM definitieu:k
z = (e @/ g) (1 - /MWy ) | (3.7)

The advantage .of this will become apparent later. (This definition of =z
is of course not accurate enough to be used in computing the horizontal
pressure force in the NGM forecast equations. But the purpose - of z. in
(2.32) is to assign weights to the buoyancy tendency, as a function of
elevation, that are different from -those in (2 22), and (3.7) is more’ than
adequate for this purpose.) The function ]I in the NGM is given by:

T = (5 / 100chb )yL = ( ps/loocb)f\” (1 ‘U‘)K >

= Tes (1- 6%

where W = R/ Cp »

(3.8)

Thirdly, we recognize that the v1rtual temperature effects imply .
that the buoyancy "b" must be defined as

‘where @, is the virtual temperature in the NGM as defined by (3.1). The

second term, being constant, can be 1gnored., Equations (2.22) ‘and
(2. 32) can now be written as . :

J-Q(Ps 9V ) /at d 0-‘ = @ B 5 ‘ R . (3-10) .
and | , } ‘ ‘ ‘ R nn ’
J<1- T/ Moo ) D€ pg &) /Dt do = (g/e)) (0.4 1B -2.5p ul)

| | B 3
The last of these may be combined with (3.10) and (3.8) to give '

; | : . v

(L=0) J(ps 8)/2t dg =
' ‘ S DR A (3.12)
( ®@ -,0f4 g h /‘cp ) ? + (2.5 g:fys / cp')-u*3

. —8— :



The time integration procedure in the NGM involves a preliminary
step. from. t to. t + (1/2) dt , followed by a full time step from ¢t
to t +'dt. All friction and turbulence terms are applied only in the
full time step; this will also be true for for the present form of
vertical mixing. : - o

We should also recognize now that the goal of this process is to
determine the changes in pg & and the changes in pg q ; changes in
“‘buoyancy ( i.e. pg 8y ) are only an intermediate step. It will be
convenient to use the following notation for these variables.

X = pso | (3.13)
Y= »a (3.14)
B= psey . - o (3.15)
From (3.1), we have that . | |
i | 3 = ( 1‘:+ ';6’09(11)0( +  (0.609 &) ) ¥ . (3.ae)

: In one time step the turbulence will producévthe following>changes in
o and 4" for a column. ; ' , -

g dt e 6 d
R fﬂ -

‘ 554&4‘ = = gdt pg( W'G');

B s S | o (3.17)
‘ o =(gdt/ Nlgep) HF =  B*. '

| 53"d0’ = ‘g" d_t';-a—-r \f :q‘»dz = g dt A whq"),
ST e £ A [ 7 (3.8)

Forksymmétry we also define aféomparablekqﬁantity for the surface stress term.
W= e ( '/o-s,u*?’) . - (3.19)
HF, EV, and ( 'AL*B ) will form the inpﬁf of forcing terms for the mixing

”computations.u-Tﬁe starred forms above are presented. here only for notational
convenience. ‘ ' .



4o Efficient solution of the m1x1ng equatlons.

Equatlons (3.10) and (3.12) will be applled to each column of grid points
. in' the NGM by expressing the sigma integrals as a sum over the bottom

sigma layers of the model. The layers involved are determined by the

" following definition. -

The mixing region will consist of layers k= 1,2,3,--,K, where

“layer K iefthe-first layer (at time t ) -such that &y ( or (3)3 ex—

ceeds the valne of &y ( or (5 ) in the mixed layers beneath it.

The integrals will therefore be replaced by sums over layers 1 through K .
‘(A more precise deflnltlon of when K exceeds-{3 in ‘the layers underneath
it will be given in (4.31) near the end of this section. ) :

As stated in this way, there would be K values of (3 (t+dt) to be
solved for, from only two:equations. This 1ndeterm1nacy for K greater

than 2 ) is however only an apparent one because we view the mixing
process in this time step as resulting in a uniform value of /? (t+dt)
in the layers k = 1,2,-—,(X~1), and a new value of /2 in layer K .
Thus there are really only two unknowns.

Let 5(3 K and gﬂm denote the changes in the buoyancy /Z for
layer X . and the layers 1 through (K—l) . ‘ :

SBx = Bxene - ) | LG
§Pn ﬁm(t+dt) - /z'm(t) .

When K is greater than 2 /2m(t) will be defined as the follow1ng
'average value: '

K-1

PUREE g

ﬁl‘»“(t) 40 Fk(t) /- sk R O
e ' R
where - Sg - is thé value.ofvsigma at the base of layer K: - ‘ '. ' ;
SR o 1 ‘v o . | . :
Sg. = Z Aoy g ‘ : - RRTRSS
- k=l .

The finite sum counterpart of the integral statement (3.10) is now
st §fn + M’KSFK = X (4.5)

=10~



where X is‘given’by

X = (1L+0.609 q ) BX + (0.609 & ) E* . (4.6)

To eXpress'the ¢0unterpart of (3.12) it is convenient first to introduce
the notation S : i o '7t : } ‘ ) ) ,
' | Lro= (1 —e)" v DD

' The counterpart of (3:12) becomes

R Sfm + Aox rK “ éﬁl{
Rg is.equal‘tb R : ‘
RK i ZA o‘-k L : ’ (‘4-9)
kRl el | .

Y = | | ('1 - .;‘ff—;_f‘)‘-x 4 ( m——— ) W . (4.10)

I
i

(4.8)

“and Y is

At this point we must define the Deardorff-Willis length "h". We
will take ‘it as equal to the vertical extent of layers 1 through K-1.
A value for this that is consistent with (3.7) is
' gh ) . oo . s o B
—— = (1 = xx ) | (4.11)

\lwhere? B Lo e

rég = (1-Sg) (4.12)

nd»(_Note that this lastlstep haS'remoVed all reference to & » the potential

- temperature of the reference atmosphere. ) This yields a moderately simple

Asimple”expression for Y )
Y = [ (1-0.4)+0.brég ] X +  —mmomm WL (4.13)
The.solutions of (4.4) ahd_(4;7) are

| OBRgX - S Y T
éﬂK = —— ——— ’ C(4.14)
o A0k (Rg - g Sg ) | :

and ‘ . «
. -k X + Y : :
6. - = ; (4.15)

-11-



It is however worthwhile to expand these expressions for greater clarity.
First we define a mean value of r by the ratio

Ty L oRe / osg
LrcAow 1 )50k | (4.16)

r decreases slowly with increasing sigma ( or K ), from a value of one at
sigma = Q0 to about 0.9 at sigma = 0.5 . However it satisfies the inequality

rx (‘?K‘ 1 . SRR C(4.17)

The denominators of (4;14) and (4.15) are therefore positive.

We now introduce the expression (4.13) for' Y, and arrive at the following
expressions for the changes in the buoyancy of layer K and the uniform
buoyancy of the " K-1 layers underneath layer K .

AO’K(;K—]?K) g@K =

: : (4.18)
o . o 2.5 g N
- [(l-—rK)—O.li_(l-—r*K)]X’— ( ) WE
: ’ : : o Cp ‘ .
and

SK(TK‘rK) éﬁm = .

» . | (4.19)
» ‘ S s 2.5 g _
[(1 - rg) = 0.4 (1 - r¥g )] X+ —) Wk .
' L o Cp .

The right sides of these two equations differ in only two regards: the
outermost signs are different, and (4.18) uses Ty while (4.19) uses

Tg. The square brackets multiplying X can be converted into the foll-
owing expression by inserting the adiabatic "z" that is defined in (3.7).

, g
[ ]’= (z' = 0.4 2% ) ., © (4.20)
| * ®
z%¥ is "z" at the top of layer K-1 . For (4.19), z' is "z" in the
middle of . layer K . The square bracket is therefore positive in (4.19).
For (4.18),  z' is equal to :

. | K-l K-1
z' (4.18) = 2 A4 > Aoy . (4.20)
=l =1

This is the mean "z" of layers 1 through K-1. This in turn is equal
(approximately) to 0.5 z* . The square bracket will be positive also

for (4.18) —-- although smaller than that in (4.19). This arrangement of
signs for the buoyancy changes is as it ‘should be, with negative. changes

=12~



11n the layer- just above the completely mixed layers and p051t1ve changes
in the completely mlxed layers underneath,.

A precise definition_of the determlnation of layer K —— i.e., the.
first layer above:the completely mixed region———  1is now possible. To do
this, we note that (4.18)-(4.19) can be rewritten as s
SBx = - aAg (FX - BBgX) ' (4.21)
$6a

FX has been deflned as the following combination ( independent of K):

and

+CCg ( FX - DDy X ) , S (4.22)

FX '=(1—04)x +(25g/cp)w*, ' (4.23)
and the follow1ng p051t1ve functlons of K have been defined.

1 (/MK ¢ rK ~x) ), (ha24)

Ahy =
BB = (% = o r*K ), | (4.25)
e = 1;.‘/'5 Sx ('EK - ¥ (4.26)
g DDK = ( rK - 0.4 r¥g ) . o (4.27)

In order to suppress small 1rregular1t1es in '/Z we define, for each
layer K , a mean value of (% for the layers underneath it at time ¢t :

Z_ zﬂo’& ﬂk - | : (4;28)
=1 o

 Equations (4.21) and (4.22) then predict, for any 1ayer.thst is under
" consideration as possibly being the correct layer K, that

(ﬁK" @m)t-l_dt = (ﬁK— ﬁm)
: [ ( AA + CC)K FX - ( AA BB + CC DD )g X-]
(FK" Bud - B . w2

where Ex 1is positive.

Theemixing should involve enough layers that the left side of (4.29) is
. not negative. The criterion for determining layer K  is therefore that it
is ‘the first layer that satisfies the criterion '

«fr - Bn )t > E‘K - | B (4.30)

~13—



. v As noted earlier, the NGM-code expresses ' pg - in units of 100. cbs

* rather than the centibars implied in the equations of this Office Note.
Allowance for this is made by simply dividing the time increment dt

by 100 when multiplying the input variables HF, EV, and A u*3‘ « This

converts 5(3 into the proper NGM units for pg®y, and will also take '

care of the mass exchange xm and §pse and ;§'qu that are derived

- in the next sectiomn. ‘ ‘

5. Changes in potential .temperature and specific humidity.

- We turn now to the question of constructing the changes in the NGM
"history variables”, namely potential temperature ( actually £ = pg @ )
and specific humidity ( actually % = pgq ) . We picture the change
58x  in (@ of the top layer to have been brought about by an interchange
of "xm  units of mass between the top layer and the layers underneath
it. That is to say—— ’

gﬂK = mass added times ﬂm(t) - mass lost times ﬂ r(t)
= - xm - times (ﬂm(t) - F () ). . (5.1)
(_The mass added is eQual to the maés lost '«.) This defines xm as
' B < S
i ' Xm = '
. E ' ﬁ‘m(t) = ﬂ g(t)
' The denominator is negative, and the mixing eqtia‘ti‘ons,, ask‘ discussed at

~ the end of the last section, will produce a negative numerator. The criterion
(4.30) insures also that  ‘xm~ does not exceed one.’ oo

S RN

‘ We now picture the same process with "respect to  of = Ps ©. .. Knowing '
xm from (5.2), we first solve for ol at - thdt. R ' :

oy (thdt) = (1 -xm) ol ((t)+ xm & () 5 = (5.3)
where B L . ‘
oA p(t) = Z dﬂ'k O(k(t) / » Sk L, (5.4)

».(3.17) states the conservation of heat. It can be written as

Sg o p(t+dt)  +  Bop Lg(t+de) ‘=‘ - Sg A () + AO‘K‘.‘O(K(t‘)-
o + BE -~ (5.5)
‘This .c-;an now be solved foi: A m( t+d£).
For ’2’ ( = fns q ) we ’car{ follow the sameﬁpvrocédu‘re.’ ’
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In conclusion, some consideration is mecessary for the case where the
flux ‘of buoyancy at the surface is directed downward ( as would occur ‘
when the near-surface temperature is warmer than the underlying surface ).

. In the case of negative H* , for example , the appropriate procedure

would seem to be to first. subtract from Pg® in layer 1 the amount- 1mp11ed
by the downward flux of heat, and then to apply the mixing process described
in this note but with H* set equal to zero. Similar reasoning would
apply‘to a downward flux of moisture at the ground ( negative E*»),

Tests were made with this surface mixing method in the winter of 1985-6.
At this tlme, the NGM did not contain radiation, so that neither sensible

flux nor evaporation were computed over land. Only the 'mechanical stirring
‘was effective over land, therefore. The tests showed that an average warming
of about one degree per day in the bottom layer (over land) was caused

by the stirring. Changes as large as +10 degrees per day were obtained upon
occasion in regions of -strong wind with very cold bottom-layer temperatures.

6. Saturation at the top of the miﬁéd.layers;

The mixing process described above can lead to saturation in the top
layer (K=1) of the mixed layers, especially in cold air that moves out over
warm water. In one experimental forecast containing an outbreak of cold
air over the Gulf of Mexico, a shallow (K=2) mixed layer characterized the
initial cold air over the southeastern United States. When this air moved
out over the Gulf, the mixed layers rapidly extended up to include layer
3. This occurred in the presence of strong subsidence. This subsidence
evidently acted to prevent the mixed layer from extending up higher,
by producing relatively warm air in layer 4, with a pronounced. inversion.
The strong evaporation then produced saturation in layer 3, while the
relative humidity in layer 4 was less than 10%. The saturation in layer 3
was realistic in that satellite pictures showed overcast stratocumulus in
the cold air.. However, the model forecast precipitation in all of the

cold air over the Gulf——-more than suggested by the few ship observations.

The computations described in the preceding sections allow for the
_buoyant effect of moisture through its effect on the virtual potential
temperature, but they ignore the effect of the release of latent heat in
saturated air. When the air in layer K-1 ( the top of the mixed layers)
is saturated, air parcels from that layer that participate in the mixing
process with layer K, will move upward along a moist adiabat instead of
‘along a dry adiabat. ' They will therefore arrive in layer K with a larger
buoyancy .than if they were unsaturated. Thus, the buoyancy k. of the
capping layer K will not be as great relative to the mixed layers under—
neath.

‘A crude estimate of the reduced relative buoyancy of layer K can be
- ‘obtained by the calculation"

@K (adjusted) = @K (ofiginal) - Ps SQ-, , | C(6.1)

~ where §49 is the change in. € of a parcel lifted along the moist adiabat
from layer K-1 to layer K. This is given by the expression :

Se = (pg-pr1) x do / dp Iy adiab + (6.2)
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A sufficiently accurate exﬁression for de / dp is

' V S e ,q){( ll4.t )
( d® / dp )y adiab = - = - ' > (6.3)
‘ | p (qa tex P)

" where

(4
€

S o T /el , | (6.4)
and. S

R(dry.air)'/ R(vapcr). : ; | (6.5) "

: b.The'effect of this on the the mixing factor - xm defined in (5 2) is
- to replace ’GK(t) in the denominator by the adjusted value from (6.1):

. _ ( -5(21( ) o
Xm(adj) = e ‘ o (6.6)
PBxlt;adi) ~ B(t) ' '

This Will increase xm from the unsaturated value, and 1ncrease the turbulent'“
flux of moisture upwards into layer K, with a correspondlng reduction in :
‘the moisture remaining in the mixed layers k=1,2,--(K-1). The increase in
~xm will also increase the warming of the m1xed layers. ~Both of these
changes will reduce the saturation orlglnally present in layer K-1.

v The adJustment to- K(t) could make the denominator of (6.6) small
‘“enough- that layer K no longer satisfies. condition (4. 30). . Some experi- o
mentation will probably be needed to see if it is necessary then to proceed
to the next layer for K, or whether a cheaper expedient is possible.

Acknowledgments. My first ideas on this method of formulatlng the surface
mixing process for the NGM ignored the buoyancy integral in the equation
for turbulent kinetic energy when the surface buoyancy flux was positive.
(In other words, I had ignored the experimental measurements by Deardorff
and Willis!) Dr. Douglas Lilly drew my attention to tliis important
omission.. Dr. Paul Long helped considerably in the early formulation
stages and in drawing my attention to the thesis by A. Driedonks.
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APPENDIX
Test solutions of (4.18)-(4.19), together with (5.3)-(5.5), have been
made for a single column. The forcing values were constant in time. The

“-surface heat:flux ( BF ) was either zero, or had the value

. HF = ‘f’s x Cq x velocity x cp X temperature difference

(1.125 1073 ) x (2.0 10-3 ) x (5 m/sec) x 1005 x (2 degrees)

0.02261 kjoules per square meter per second.

( Cq is a drag coefficient.)  The mechanical stirring (W) was also either
zero, or had the value ‘

fs u*3 = PS ( Cdl/z velocity )3

ps (2.0 1073 )1/2 x 10 m/sec )3

n

0.0001 tons per second
Evaporation was set equal to zero in all cases.

The delta sigma values were based on a uniform layer depth of about
300 meters, similar to that in the bottom layers of the NGM. The surface
.préssure was 1013.25 mbs at a height of zero meters above sea-level,
Pressures in the middle of the layers were 995.4, 960.6, 927.1, 894.7,
863.4,——— millibars. Specific humidity values of 9.82, 9.48, 9.15, 8.83,
8.52,~—— grams per kilogram were assigned to the layers. Two distributions
of potential temperature were treated, corresponding respectively to temperature
lapse rates of =6.5 and +20.0 degrees per kilometer, each with a temperature
of 288K at sea level. ‘A time step (dt) of 10 minutes was used, and calcu-
lations were continued in each case until layers 1 through 4 were uniformly
mixed., The accompanying tables show the values of ® at the moments
when each successive layer became completely mixed.

The time required to mix a given number of layers is larger with the more
stable: lapse rate. The non-zero values of HF and W were chosen fortuitously so
that approximately the same time is required by HF and by W to mix layer two
with layer one. However, from then on the stirring case ( HF = 0 ) falls

- behind the heating case (. W =0 ). This is in accord with the statements made
near the end of section 2, '

The growth of the number of completely mixed layers with time is simple
in these cases. Each table contains a value of the time required to mix
a certain layer, divided by the time to mix layer two with layer one, and
then raised to the power1/2 for the heating case and 1/3 for the stirring
case. - The linear growth of these numbers verifies that these calculations
reproduce the well-known results deduced from the conventional model with an
explicit value of "h".

. The values of.  xm ',?the mass exchange variable, varied in these
calculations from a minimum of 0.0005 upon starting a new layer to a

maximum of 0.08 at the end of layer 4 in the -6.5 deg/km case.

~18-



LAPSE RATE = —6.5 degrees per kilometer

| | _HF = 0.02261, W =0 o HF = 0, W= 1074
”‘t;me(h;s)_ 0 3.0 8'1/6- 17 1/3 | 31/3 13 32 1/6
layeé. |
5 295.045
& 29403 o 203.652 | | 292.587
3 293150 L 1292862 293.652 292,153 292.587
2 292.182  292.056  292.862 293.652 | 291.694 292.153  292.587
1 291.253  292.056  292.862 293.652 | 291.294 292.153  292.587
————— ( timé'/ 3 hrs )1/2 —t— ous |- - ( time / 3 1/3 hrs)l/3 - -
0 1 1.65 2.40 I 1.57 2.13
LAPSE RATE . = +20.0 degrees per kilometer:
© HF = 0.02261, W= 0 HF = 0, W= 1074
time(hrs) 0 | 33 1/6 94 5/6 186 1/6 351/2 139 5/6 346 1/6
'ilaYe?‘ kv ' B ‘ o
s 332847
o 323208 319.714 e 308.395
3 "313;729. C si.el9 319.714 . 304.125 308.395
i zl=. »f © 304.404  303.564 - 311.619  319.714 | 299.703  304.125 _ 308.3é5‘~‘
1 511295;286 303.564 311;619‘ 319,714 299.703 304,125 308.395
I ( time / 33 1/6 hrs)l/? - - - - =( time / 35 1/2 hré)l/é -
o 1  1.69 o 2.37 L 1.581‘: 2.4
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